ANALYSIS AND ARCHITECTURE FOR MEMORY
EFFICIENT JBIG2 ARITHMETIC ENCODER

Chun-Chia Chen, Yu-Wei Chang, Hung-Chi Fang, and Liang-Gee Chen
DSP/IC Design Lab, Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
{chunchia, wayne, honchi, lgchen}@video.ce.ntu.edu.tw

Abstract— JBIG2 is the latest international standard for bi-level image
compression. It partitions a bi-level image into three types of region—text,
halftone, and generic region. This paper addresses the problem of large
memory requirements for the contexts. The arithmetic encoders of text
region in JBIG2 require a large memory for the contexts. In this work,
we proposed several algorithms to reduce the memory requirements. A
large portion of total memory requirements are reduced by the proposed
algorithms. Moreover, the proposed algorithms are implemented as a
memory efficient hardware architecture, the unified arithmetic encoder.
The experimental results show that the proposed algorithms are efficient.
The proposed algorithms can reduce the memory requirements for the
contexts by 98.7%. Moreover, the drop of coding gain due to memory
reduction for the contexts is only 4.83% in average.

I. INTRODUCTION

JBIG2 is the latest international standard for lossless or lossy bi-
level image compression [1]. In JBIG2, a bi-level image is first
segmented into three types of region—text, halftone and generic
region [2]. Then, they are coded separately by suitable algorithms [3].
The text region is coded into a symbol dictionary and a text region
data structure, and then coded separately [6]. The halftone region is
decomposed into a pattern dictionary and a gray image, and then
coded separately [5]. The generic region is coded by a context-based
arithmetic encoder. In this paper, we focus on text coding.

In JBIG2 text coding, the text coding algorithms are well discussed
and described in [6] [7] [8]. However, there is no discussion on the
hardware issues of the Arithmetic Encoders (AEs) for text coding.
Thus, we focus on the hardware issues of the AEs. The huge ConteXts
(CXs) memory of AEs of JBIG2 is a serious problem for hardware
implementation. Therefore, analysis and techniques overcoming this
problem are proposed in this work.

In JBIG2, the computational complexity of AEs occupies a con-
siderable portion of total complexity. Table I shows the average
time profiling results of coding CCITT standard bi-level images. The
AE computation time occupies 29.6% of total computation time of
JBIG2. Moreover, the AE involves many bit-level operations, which
are not suitable for processors. Therefore, hardware acceleration of
the AE is an efficient way to implement the JBIG2 system.

The AEs require a large memory for the CXs. If the memory is put
on chip, it will occupy most of the chip area. This problem makes
low cost AE accelerator of JBIG2 unrealistic. Thus, we proposed
algorithms to reduce the CXs memory.

This paper is arranged as follows. Section II introduces the AEs
of JBIG2 and the problem of huge CXs memory. To solve this
problem, algorithms in Sec. III is proposed. A contexts memory
efficient hardware architecture to support AEs in JBIG2 is proposed
in Sec. IV. Section V lists the experimental results. Finally, Sec. VI
is the conclusion.

II. PRELIMINARY

JBIG2 text coding has several stages. To code a text image, a
dictionary is built in a sequentially-symbol-matching manner. During

0-7803-9197-7/05/$20.00 © 2005 IEEE.

(Start)

¥
Extract a symbol

¥

Match with dictionary

C

oding symbol index

Add to dictionary

v
Coding symbol index

and location
L2

Coding refinement

and location information
L]
N
Last symbol?
Coding dictionary
v
(End)

Fig. 1. The Flowchart of Text Coding.

TABLE I
AVERAGE TIME PROFILING OF CODING FLOW IN JBIG2.

Arithmetic En- Symbol Match- Side Info. Other
coder ing
29.6% 36.5% 12.0% 21.9%

dictionary building, the text image is decomposed into a dictionary
and side information of text symbols. Finally, the dictionary and the
side information of text symbols are coded by several AEs. Here, we
describe the coding flow step by step.

A text image consists of symbols. In JBIG2, a text image is decom-
posed into a symbol dictionary and side information of symbols. The
decomposition is a sequential symbol matching process, as shown in
Fig. 1. After extracting from the image, a text symbol is matched
with the dictionary symbols. If there is no match, the text symbol
is added into the dictionary as a new dictionary symbol. Otherwise,
the text symbol is matched. Often, the matched dictionary symbol
is not perfectly the same as the text symbol. For lossless coding ,
the difference between the text symbol and the dictionary symbol
must be coded as a refinement. Thus, the side information of every
text symbols after the decomposition includes text symbol location,
symbol index in dictionary, and refinement information.

After the decomposition, the dictionary and side information of

1191

Symbol index + refinement information

s lancement

AT 1 D » t]
i Strip Fj,ﬂ‘ ,,,,, *1r*lefc lu
LJ N
T ATS
L» S
Fig. 2. The Structure of Side Information.

text symbols are coded into bitstreams by entropy coding. For
understanding the entropy coding, the structure of side information of
symbols is illustrated in Fig. 2. Figure 2 shows a sample text region
of a bi-level image. The horizontal axis is denoted as S coordinate,
the vertical coordinate is denoted as T coordinate. Instead of directly
coding S and T value, JBIG2 uses a strip-based differential coding
scheme. JBIG2 group symbols into strips. A text image consists
of many strips; each strip consists of many symbols with similar
T coordinates. There are many kinds of side information of text
symbols, we just list some important types in Fig. 2. The integer
AFS means the difference of FS values of two neighboring strips,
while the First S (FS) means the S coordinate of the first symbol of
a strip. The integer AT means the difference of T coordinates of two
neighboring strips. The integer AS is equal to the distance between
the right-side edge of the current symbol and the left-side edge of
the next symbol in the same strip. Integers AFS, AT and AS are fed
to AEs to encode.

The last step of text coding is the entropy coding. The entropy
coding of JBIG2 is achieved by the AEs. JBIG2 has several AEs, each
AE is responsible for a certain type of information. All AEs in JBIG2
can be classified into two types, Integer Arithmetic Encoder (IAE)
and Context-based AE (CAE). The input to an IAE is an integer. The
input to a CAE is a symbol bitmap or refinement bitmap. Here, we
just focus on entropy coding on side information of text symbols.
The side information includes symbol location, symbol index, and
refinement information. The symbol locations and symbol indexes is
encoded by IAEs. The refinement information is encoded by CAE.

In JBIG2, every AE has a set of CXs. Every CX needs several
bits of memory. Thus, the number of CXs decides the memory
requirements of this AE. Each AE has two stages, Context Formation
(CF) and MQ Coder. The CF generates CX and Decisions (D). The
Ds are coded by the MQ coder with the associated CXs.

III. ALGORITHM

In this section, memory saving algorithms for the CXs memory are
proposed. They are elementary saving algorithms, dummy insertion
algorithm, and image level refinement algorithm.

In JBIG2, some AEs have options and parameters that will affect
the number of CXs. By choosing them properly, the number of
CXs can be reduced. The AEs in JBIG2 can be classified into
three categories. First category contains IAEs which input integer is
theoretical small, thus these IAEs use few CXs. Thus, they are not the
discussed here. The second category contains CAEs, which number
of CXs can be set by parameters and options. For this category, we
just select the parameter or option to minimize the number of CXs

Origin FS

v

Text
Symbol

I Dummy Symbol J€«—AS—>

<«— Origin A'S e

Text
Symbol

Text
Symbol

Dummy Symbol

2INo N is

Fig. 3. Example of DIA on FS and AS.

while maintaining the coding efficiency. The AEs of the third category
are IAEs that can be discarded in text coding while preserve formal
syntax of bitstreams. For these IAEs, we discard them and their CXs
can be saved.

After the elementary saving step, the critical part of number of
CXs is three IAEs and the refinement AE. These three IAEs contain
IAE for coding AS (IADS), IAE for coding AT (IADT), and IAE
for coding AFS (IAFS). Hereafter, we call them critical IAEs. In the
follows, we propose two algorithms to reduce the number of CXs.

A. Dummy Insertion Algorithm

In this section, we focus on saving the CXs of the three critical
IAEs. Because of the CF rule of IAE, the number of used CXs is
related to the dynamic range of input integers of IAE. The larger the
dynamic range of an IAE, the more the number of used CXs. For
CXs reduction, it’s clear to confine the dynamic range of the input
integers of IAEs. Thus, the number of used CXs is reduced. The
unused CXs are discarded, and memory of these CXs are reduced.

However, the dynamic range of input integers of IAEs depends
on the text image. Thus, the dynamic ranges are not bounded. In
order to support lossless coding, it’s difficult to confine the dynamic
ranges while not changing the original image. Thus, we proposed the
Dummy Insertion Algorithm (DIA) to achieve this goal.

The DIA decomposes a large input integer into several smaller
input integers by inserting dummy symbols or dummy strips. Thus,
the input integers of critical IAEs can be confined to a predefined
value.

In the DIA, we add several blank symbols into the symbol
dictionary. These blank symbols have various widths. The insertion
of a dummy symbol is just to index the corresponding blank symbol
from dictionary. Figure 3 shows how the DIA confines AS and AFS.
If AS is too large, the DIA inserts a dummy symbol with suitable
width into AS, thus the large AS is cut by the dummy symbol. The
same idea applies to confine AFS. As in Fig. 3, we insert a dummy
symbol with suitable width to the leftmost of every strip. The original
large FS is replaced by the dummy symbol, thus a large FS can be
decomposed into a zero AFS and a small AS. Originally, the coded
AFS is unbound. By the DIA, the dynamic ranges of critical IAEs
are confined to a value. Therefore, the number of CXs is reduced.

Figure 4 shows how the DIA confines AT. When the AT is too
large, the DIA inserts several dummy strips between the current strip
and the next strip. Every dummy strip is blank, consisting of only
one dummy symbol. Inserting dummy strips decomposes the original
AT into several smaller ATs.

By the DIA, the used CXs of critical IAEs are reduced. Moreover,
the DIA doesn’t introduce artifacts because all the dummy symbols
and dummy strips are blank. The image is still lossless. However, the
DIA also satisfy the syntax format of the JBIG2 standard.

1192

Strip

AT

« >

Dummy Strip |

Original
AT AT

« —»

[Dummy Strip |
AT

<€ >

[Strip |

Fig. 4. Example of DIA on AT.

) (

Extracting & Matching I Extracting & Matching
2 v

Start)

Coding index & location | | Coding index & location
¥

Refinement coding I

(Start
2

I

I

12

Modified Flow

Traditional Flow

Fig. 5. Modified Flow of Image Level Refinement.

B. Image Level Refinement

To further reduce the total number of CXs, we want to share the
CXs of the refinement coding AE with IAEs. By CXs sharing, the
total CXs can be reduced. But, the CXs of the refinement coding AE
and IAEs cannot be shared in the traditional coding flow. As shown
in Fig. 5, in the traditional flow, the refinement coding is performed
symbol by symbol. After coding the location and symbol index of
a symbol by the IAEs, the refinement coding is performed only for
this symbol. During refinement coding, the CXs memory for the IAEs
must be remained for the coding of symbol index and location for
the next symbol. Thus, the CXs of the refinement coding AE and the
IAEs cannot be shared.

For CXs sharing, we propose the image level refinement. The idea
is to modify the coding flow, as shown in Fig. 5. In the modified
coding flow, the refinement coding is performed after all symbol
locations and symbol indexes are coded. After all IAEs coding,
the CXs for symbol locations and symbol indexes become useless.
Because they are not used now, data in CXs of IAEs can be reset and
reusable thereafter. For lossless coding, the refinement information
of text symbols must be coded. In the image level refinement,
the refinement information of every symbols are grouped into a
refinement image. The refinement coding AE encodes the refinement
information by the refinement image. Because the CXs of IAEs are
reusable now, the refinement coding AE uses the reusable CXs to
encode the refinement image. Therefore the CXs between IAEs and
the refinement coding AE can be shared.

The image level refinement satisfy the syntax format of the JBIG2
standard. In JBIG2, there is a region refinement data type. The image
level refinement information is coded into the region refinement data

type.
IV. ARCHITECTURE

In this section, an AE accelerator, Unified Arithmetic Encoder
(UAE) is proposed. The UAE can support all IAE and CAE types

IAE : b

Integer bIA : Binarize MQ Bits
0 I
H d Coder
H CX
e 1

CAED E H Context
E 4 Memory

CAE CX : :

Stage I : Stage 1T § Stage TIT

Fig. 6. Unified Arithmetic Encoder Architecture.

in text coding. It’s a computation accelerator for entropy coding in
JBIG2. The UAE is a context efficient engine because it adopts CXs
sharing method and the DIA.

As shown in Fig. 6, our UAE has three stages. Input integers of
critical IAEs are fed into stage I. Input integers of other IAEs pass
through another path to stage II. Contexts and decisions of the CAEs
are fed into stage III.

Stage I is the DIA stage. The input integers of the DIA module are
decomposed into several smaller integers. Then, the smaller integers
are fed to stage II one by one.

Stage II is the binarization and context formation stage, imple-
menting the binarization and CF rules of IAEs of JBIG2. It also has
context sharing method. It shares the context memory among side
information coding, dictionary coding and refinement coding. This
stage generates CXs and decisions for Stage III. As in Fig. 6. The
binarization module binaries an input integer into several decisions.
The binarization module also directs the CF module to generate
corresponding CXs.

Stage III is the MQ Coder Stage. It has two components, a MQ
Coder and a CXs memory. The CXs memory is a SRAM to store all
CXs. The MQ coder receives the address of CXs from stage II and
accesses the CXs from the CXs memory. Finally, the output bytes
are generated by the MQ coder.

V. EXPERIMENTAL RESULTS

In our experiments, the JBIG2 encoder is built ourselves named
Jerichi JBIG2 Encoder. The coding gain of our Jerichi JBIG2 Encoder
is nearly equal to the reference encoder called PowerJB2. The test
bi-level images are the text regions of CCITT standard images.

In our experiments, we focus on CXs reduction performance, the
effect of CXs on compression ratio and hardware gate count analysis.
Table II shows the number of CXs after our reduction algorithms.
In Table II, “ES” means all our elementary saving methods. The
elementary saving methods reduces a large portion of original CXs.
After elementary saving methods, the bottleneck of reduction of CXs
is in critical IAEs, those are IAE for AS (IADS), IAE for AT (IADT)
and IAE for AFS (IAFS). In Table II, “ES+DIA” means that both
elementary saving methods and the DIA are applied. It shows that
the DIA totally reduces 71.4% of original CXs of critical IAEs. Note
that “ALL” in Table II means all our methods are applied, those
are elementary saving methods, the DIA and image level refinement.
After all methods are applied, the total CXs are reduced to 1024CXs.
Totally, our methods reduce 98.7% of original CXs.

The penalty of saving CXs is the drop of compression ratio. The
experimental results of the drop of coding gain are listed in Table III.
Table III shows the coded file sizes of selected test text images after

1193

TABLE I
NUMBER OF CXS AFTER REDUCTION ALGORITHMS.

Origin ES ES+DIA ALL
IADS 512 512 293 293
IADT 512 310 85 85
TIAFS 512 512 4 4
CAE 73728 1536 1536 1024
Others 5721 1209 984 984
Total 80895 4079 2902 1024
TABLE III

FILE S1ZE AFTER CXS REDUCTION IN KBYTES.
Image Origin ES ES+DIA ALL
f01 10.98 10.92 11.06 11.36
f03 14.07 14.23 14.31 14.93
f04 35.12 35.84 36.16 36.88
f05 16.67 16.87 17.09 17.54

our algorithms. The file size of every test image in our experiments
is 505.3 KB. Table III shows averagely low coding gain drops of our
methods. Although our CXs saving techniques can reduce a large
portion of CXs, the coding gain drop is low. The total coding gain
drop is 3.9% of image “f01”, 5.7% of image “f03”, 4.8% of image
“f04”, and 4.9% of image “f05”. The average coding gain drop of
test text images is 4.83%.

Now, we discuss the gate count analysis of our UAE. After
synthesizing our design, stage I has 1496 gates, stage II has 735
gates and stage III has 3094 gates. The gate count of stage I is
approximately the gate count of the DIA module. The gate count of
the DIA module is small compared to total gates, thus the hardware
cost of the DIA is low. In addition to the low overhead, the most
important function of the DIA module is to reduce the CXs memory.
Without the DIA module, the CXs memory in stage III will increase
dramatically.

VI. CONCLUSION

In JBIG2, a large context memory is required for the arithmetic
encoders. To solve the problem, we proposed the dummy insertion
algorithm and the image level refinement algorithm to effectively
reduce the contexts memory size. We also proposed a hardware
accelerator to support all AEs of JBIG2 text coding with small
contexts memory. The experimental data show that the proposed
algorithms can save the contexts by 98.7%. Besides, the coding gain
drop is only 4.83% in average.

REFERENCES

JBIG2 Final Draft Standard, ISO/IEC JTC 1/SC 29/WG 1, July, 1999
D. Tompkins and F. Kossentini, “A Fast Segmentation Algorithm for Bi-
level Image Compression Using JBIG2”, Intl. Conf. on Image Processing,
Oct. 1999.

Paul G. Howard, Faouzi Kossentini, Bo Martins, Soren Forchhammer,
and William J. Rucklidge, “The Emerging JBIG2 Standard”, IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 7, Nov. 1998

Paul G. Howard, “Lossless and Lossy Compression of Text Images by
Soft Pattern Matching”, IEEE Data Compression Conf., March 1996

S. Forchhammer and Kim S. Jensen, “Data Compression of Scanned
Halftone Images”, IEEE Trans. on Communications, vol. 42, no. 2/3/4,
Feb./March/April 1994.

Yan Ye and Pamela Cosman, “Dictionary Design for Text Image Com-
pression with JBIG2”, IEEE Trans. on Image Processing, vol. 10, no. 6,
June 2001.

N =
—

3

—_

[4

=

[5

—

[6

—

[7]1 Yan Ye and Pamela Cosman, “Fast and Memory Efficient Text Image
Compression With JBIG2”, IEEE Trans. on Image Processing, vol. 12,
no. 8, August 2003.

[8] Yan Ye and Pamela Cosman, “Feature monitored shape unifying for lossy
SPM-JBIG2” Int. Symp. Signal Processing and Its Applications, August
2001.

1194

